You are currently viewing Jak uczyć (się) matematyki?

Jak uczyć (się) matematyki?

  • Post category:Artykuły

To pytanie jest elementem tytułu publikacji Grażyny Śleszyńskiej ,,Rozwijanie samodzielności oraz kreatywności w myśleniu i działaniu. Jak uczyć (się) matematyki, by rozwijać ciekawość poznawczą’’.  Autorka przypomina na wstępie, że chociaż definicje, aksjomaty i twierdzenia matematyczne są niezmienne, to świat i uczeń w tym świecie się zmienia i nauczanie matematyki musi za tymi zmianami podążać. Szkoła XXI wieku powinna dążyć do wyposażenia ucznia w kompetencje kluczowe – ,,4K’’:

  • krytyczne myślenie,
  • kreatywność,
  • umiejętności komunikacyjne,
  • kooperacja.

G. Śleszyńska zauważa, że tradycyjny model edukacji znany z przeszłości nie ma już zastosowania we współczesnej szkole. Stąd też nauczyciel nie jest tylko ekspertem, powinien przyjąć  role:

  • obserwatora i inspiratora,
  • słuchacz i uczestnika procesu dydaktycznego,
  • tutora lub przewodnika
  • mentora i doradcy.

Autorka w swojej publikacji wiele uwagi poświęca planowaniu lekcji. Proces ten pokazuje za pomocą przygotowanych przez siebie map myśli. Przy konstruowaniu celu ogólnego zadaje m.in. pytania:

  • co uczniowie mają osiągnąć?
  • czego oczekuję od uczniów po lekcji?

i zaznacza, że konstrukcja celu odnosi się do wymagań ogólnych podstawy programowej.

W dalszym ciągu rozważań podkreśla znaczenie posiłkowania się dla zwiększenia aktywności uczniów pytaniami problemowymi. Zachęca również do stosowania takich sposobów organizowania pracy, aby, jak  to określa, ,,uczeń stawał się odkrywcą swojej matematyki’’.  Wylicza następujące metody:

  • metoda czynnościowa,
  • praca z Mapami Rozwiązywania Problemów – TOC,
  • uczenie się we współpracy metodą JIGSAW,
  • nauczanie – uczenie się zgodne z cyklem Kolba.

Autorka opisuje te metody i podaje przykłady ich wykorzystania w praktycznym działaniu.

W końcowej części publikacji podaje bogatą  literaturę przedmiotu oraz netografię.

Źródło:

  • Grażyna Śleszyńska ,,Rozwijanie samodzielności oraz kreatywności w myśleniu i działaniu. Jak uczyć (się) matematyki, by rozwijać ciekawość poznawczą’’ ORE 2025
  • ore.edu.pl